Robust Multiagent Reinforcement Learning toward Coordinated Decision-Making of Automated Vehicles

Author:

He Xiangkun1,Chen Hao1,Lv Chen1

Affiliation:

1. Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore

Abstract

<div>Automated driving is essential for developing and deploying intelligent transportation systems. However, unavoidable sensor noises or perception errors may cause an automated vehicle to adopt suboptimal driving policies or even lead to catastrophic failures. Additionally, the automated driving longitudinal and lateral decision-making behaviors (e.g., driving speed and lane changing decisions) are coupled, that is, when one of them is perturbed by unknown external disturbances, it causes changes or even performance degradation in the other. The presence of both challenges significantly curtails the potential of automated driving. Here, to coordinate the longitudinal and lateral driving decisions of an automated vehicle while ensuring policy robustness against observational uncertainties, we propose a novel robust coordinated decision-making technique via robust multiagent reinforcement learning. Specifically, the automated driving longitudinal and lateral decisions under observational perturbations are modeled as a constrained robust multiagent Markov decision process. Meanwhile, a nonlinear constraint setting with Kullback–Leibler divergence is developed to keep the variation of the driving policy perturbed by stochastic perturbations within bounds. Additionally, a robust multiagent policy optimization approach is proposed to approximate the optimal robust coordinated driving policy. Finally, we evaluate the proposed robust coordinated decision-making method in three highway scenarios with different traffic densities. Quantitatively, in the absence of noises, the proposed method achieves an approximate average enhancement of 25.58% in traffic efficiency and 91.31% in safety compared to all baselines across the three scenarios. In the presence of noises, our technique improves traffic efficiency and safety by an approximate average of 30.81% and 81.02% compared to all baselines in the three scenarios, respectively. The results demonstrate that the proposed approach is capable of improving automated driving performance and ensuring policy robustness against observational uncertainties.</div>

Publisher

SAE International

Subject

Control and Optimization,Mechanical Engineering,Automotive Engineering,Computational Mechanics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heterogeneous graph social pooling for interaction-aware vehicle trajectory prediction;Transportation Research Part E: Logistics and Transportation Review;2024-11

2. AL-MobileNet: a novel model for 2D gesture recognition in intelligent cockpit based on multi-modal data;Artificial Intelligence Review;2024-09-05

3. Design optimization of a wearable chair using The Bees Algorithm;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-07-23

4. Deterministic and stochastic model predictive energy management of hybrid electric vehicles using two improved speed predictors;Advances in Mechanical Engineering;2024-06

5. Spatio-Temporal Trajectory Planning Using Search And Optimizing Method for Autonomous Driving;SAE Technical Paper Series;2024-04-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3