Optimizing Power Consumption in Machining Nickel-Based Superalloys: Strategies for Energy Efficiency

Author:

Başaran Alper1,Özer Mahmut2,Kazan Hakan2

Affiliation:

1. Amasya University, Institute of Science, Department of Occupational Health and Safety, Turkey

2. Amasya University, Department of Mechanical Engineering, Turkey

Abstract

<div>In the face of the world’s population growth and ensuing demands, the industrial sector assumes a crucial role in the management of limited energy supplies. Superalloys based on nickel, which are well-known for their remarkable mechanical qualities and resilience to corrosion, are now essential in vital applications like rocket engines, gas turbines, and aviation. However, these metals’ toughness presents a number of difficulties during machining operations, especially with regard to power consumption. This abstract explores the variables that affect power consumption during the machining of superalloys based on nickel in great detail and suggests ways to improve energy efficiency in this area. The effects of important variables on power consumption are extensively investigated, including cutting speed, feed rate, depth of cut, tool geometry, and cooling/lubrication techniques. A careful balance between these factors is necessary to maximize machining efficiency and reduce power usage. Furthermore, this study reviews the effect of different heat source applications on power consumption and the resultant quality of machined nickel-based superalloys. Additionally, the critical role of cooling and lubrication in mitigating the adverse effects of high temperatures generated during machining is thoroughly examined. Innovative cooling strategies, including cryogenic or high-pressure coolant systems, are explored as potential avenues to enhance heat dissipation and minimize power requirements. In essence, this abstract not only sheds light on the challenges inherent in machining nickel-based superalloys but also offers actionable insights into how energy efficiency can be maximized through strategic parameter optimization and the adoption of innovative cooling techniques. By addressing these aspects, manufacturers can effectively navigate the complexities of machining superalloys while minimizing their environmental footprint and operational costs.</div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3