Comparative Analysis of Axial Flux and Radial Flux Motors for UAV Propulsion: Design and Suitability Assessment

Author:

C Carunaiselvane1,Kumar Rajesh1

Affiliation:

1. REUDE Technologies

Abstract

<div class="section abstract"><div class="htmlview paragraph">In the architecture of an Unmanned Aerial Vehicle (UAV), a crucial component responsible for the propulsion system is the electric motor. Over the years, different types of electric motors, including Brushless Direct Current (BLDC), have supported the UAV’s propulsion system in diverse configurations. However, in the context of flux flow, the Radial Flux Permanent Magnet Motor (RFPMM) has been given more priority than the Axial Flux Permanent Magnet Motor (AFPMM) due to its sustainability in design and construction. Nevertheless, the AFPMM boasts higher speed, power density, lower weight, and greater efficiency than the RFPMM, because of its shorter flux path and the absence of end-turn winding. Therefore, this paper focuses to conduct a suitability analysis of an AFPMM as a shaft-connected propeller-mounted motor, with the intention of replacing the RFPMM in UAV applications. The design of the AFPMM, incorporating topologies featuring a one-rotor, one-stator configuration, is considered. In this research, the physical dimensions of an AFPMM required to meet performance parameters are derived using systematic analytical equations. Furthermore, the design is executed using a multi-physics simulation tool to analyse the electromagnetic behaviour of the model. To validate the designed model and compare its characteristics, a prototype of BLDC RFPMM with similar output performance parameters is selected. The operating parameters are tested for compliance with the recommended output characteristics of the Original Equipment Manufacturer (OEM). Through reverse engineering, the design dimensions are obtained, and the electromagnetic behaviour is analysed using a multi-physics simulation tool. Moreover, based on the performance characteristics of the RFPMM, the design dimensions of the AFPMM are determined using sizing equations and assumed design variables. The suitability analysis, focusing on UAV behaviour is scrutinized to identify the most appropriate electric motor for ensuring the sustainable and efficient operations.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3