A Multi-Disciplinary Optimization Approach for Lightweighting and Performance Improvement of Electric Light Commercial Vehicle

Author:

Kukkillaya U Saketh1,Gumma Muralidhar1,Potarlanka Srinivasarao1,Durgam Padmaja1

Affiliation:

1. Altair Engineering India Pvt. Ltd.

Abstract

<div class="section abstract"><div class="htmlview paragraph">Rapid Urbanisation, in recent times, has created an exponential demand for light commercial vehicles. Electric vehicles are seen as a way to reduce the impact of emissions due to transportation in urban areas. Due to the growth of e-commerce, commercial transportation, and particularly last-mile delivery, is anticipated to increase. In this context, electric light commercial vehicles (eLCVs) have the potential to be a promising solution by tackling the emission impacts, ensuring faster delivery along with ideal running costs and payload capacity. To increase the range of electric vehicles, it has to be designed for lighter weight with optimal performance in order to meet the user requirements. Cargo capacity and payload have to be taken into account while design &amp; validating the vehicle structure under static and dynamic conditions. Simulation driven product development will help the design team to account for the possible design failure cases at system and vehicle level. However, all these cases are multi-disciplinary and require validating the individual design verification plans (DVPs) of each discipline. Optimizing the performance of all these cases individually and provide design solutions will result in the increase of product development timelines. Structural Design verification plans for three disciplines a) Crash / Safety, b) Durability / Reliability, c) NVH / Comfort will be discussed in this work to meet the system and vehicle objectives. A Multi-Disciplinary Optimization (MDO) approach is explained which will provide upfront feasible design routes considering various disciplines performance targets and weight targets at systems level, based on the severity and importance of the system.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3