ePNC Diffusion-Charging Based Particle Number Counting Technology as Alternative to Condensation Particle Counting Based Methods

Author:

Laakkonen Elmeri1,Nikka Markus1,Lambaerts Peter1,Arffman Anssi1,Karjalainen Panu2,Seifert Philipp3,Schwanzer Peter3

Affiliation:

1. Dekati Ltd

2. Tampere University

3. Scale MT GmbH

Abstract

<div class="section abstract"><div class="htmlview paragraph">Particle Number (PN) measurement testing has for long been conducted by using Condensation Particle Counter (CPC) based technology. While accurate at low concentrations, CPC has nevertheless several drawbacks for in-field use, such as the use of a working fluid, the need for dilution, the delicate optical components and the sensitivity to contamination. Diffusion Charging (DC) based particle counting technologies have often been disregarded as a valid alternative to CPC based methods due to their intrinsic particle size dependent counting efficiency and lower sensitivity. However, Dekati’s novel ePNC PN technology has brought DC technology to the next level. Due to its patented technology, the Dekati ePNC’s particle counting efficiency is nearly size independent, turning DC as a competing technology for CPC, especially for demanding field applications, such as Periodic Technical Inspection (PTI), Portable Emission Measurement Systems (PEMS) for Real Driving Emissions (RDE), and brake and tire wear measurements. These applications require the ability to continuously measure elevated particle concentrations with sufficient accuracy in often harsh environments such as garages or during on-road testing. In this study we will look closer into the ePNC technology and show the results of recent measurement campaigns that prove the suitability of the Dekati ePNC’s DC technology as an alternative to CPC methods. For example, during vehicle type approval style chassis dynamometer measurement ePNC technology was found to produce comparable results against a PMP reference (7% difference in emission factor).</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3