Optimised Air Management System for Heavy Duty Hydrogen Engines

Author:

Emran Ashraf1,Paranjape Sumeet1,Sreedharan Sajil N1,Jagodzinski Bartosch2,Garg Shivam1,Sharma Vijay1,Wagh Sachin1

Affiliation:

1. FEV India Pvt. Ltd.

2. FEV Europe GmbH

Abstract

<div class="section abstract"><div class="htmlview paragraph">Many Indian cities are amongst the most polluted cities in the world. Transport sector is identified as one of the major contributors to air pollution. Following the global trend, Government of India is also promoting near zero emission fuels with zero CO2 emissions as a way forward to solve the emission problems. With its policies like Green Hydrogen Mission, government of India plans to accelerate the adoption of Hydrogen as a fuel in the country. These initiatives have created a breakthrough in development of Hydrogen ICEs by the Indian OEM’s. Hydrogen ICE have only NOx emissions as the most prominent engine out emissions. NOx emission in Hydrogen engines is very sensitive to operating lambda, where in, after a certain threshold lambda the emissions rise significantly. Therefore, the air management system plays a very important role in the hydrogen engine performance &amp; NOx emissions. This study evaluates various air management system options for a heavy-duty Hydrogen engine. Initially, a single stage variable geometry turbocharger (VGT) was assessed with focus on good low-end torque capabilities. The rated power output with the single stage turbocharger can be improved by supplying cooled HP EGR, by shifting the turbocharger operating points towards higher efficiency and lower turbocharger speed improving speed margin. The single stage TC configuration is then evaluated against a 2-stage VGT turbo charger configuration, which achieved higher lambda levels, thereby improving low-end torque, and reducing NOx emissions. The 2-stage turbo charging achieved higher brake efficiency and improved altitude capability. This study has been performed using 1D simulation based on validated engine model from FEV database. The mentioned TC systems have been matched for the engine requirements, and engine mappings created. The mappings are then used to assess the cyclic NOx emissions for the different TC configurations over the WHTC emissions cycle to assess the improvement in the emissions and requirement of overall De-NOx system requirements.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3