Virtual Sensor Modelling for Ammonia Slip Estimation to Improve SCR Performance in Real Drive Emissions

Author:

K Sabareeswaran1,M Jayashree1,YS Ananthkumar1

Affiliation:

1. Albonair India Pvt. Ltd.

Abstract

<div class="section abstract"><div class="htmlview paragraph">Urea-NH3 dosed Selective Catalytic Reduction is a powerful reaction system to ensure NOx reduction in the exhaust gases by minimizing ammonia slip. When the dosed ammonia exceeds the actual request than the required, NH3 to NOx ratio is potentially high, the unused ammonia is limited to 10ppm corresponding to experimental result of every World Harmonic Transient Cycle. The dosage estimation depends on the NOx sensors which has this drawback of high cross-sensitivity to ammonia that can affect the measurement of NOx and compromise the SCR-ASC closed loop strategies. This paper aims to resolve the complexity in prediction of ammonia slip to resolve the cross-sensitivity of tailpipe NOx sensor in the SCR system by a closed loop estimation of NOx and ammonia slip to ensure high NOx conversion efficiency. The focus is to develop a simplified model-based solution for estimating ammonia slip, because of the limitations in the real drive conditions in SCR system. This model approach is designed in such a way that it predicts the NOx and NH3 emissions after the SCR catalyst and calculates even in the failure conditions of closed loop feedback of urea dosing. A Filtering solution that combines the signals from inlet NOx sensor, tailpipe NOX sensor and the total system efficiency to provide a reliable estimation of NH3 slip.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3