Three Way Catalyst with Faster Light-Off Substrates – A Promising Approach to Reduce Tailpipe Emissions

Author:

Kale Vishal Maruti1,M Ravisankar1,Hosur Viswanatha1,Sridhar S1,Bhimavarapu Aditya2,Lende Nilesh Ashok2,Rose Dominik3,Tao Tinghong4

Affiliation:

1. Tata Motors Ltd.

2. Corning India

3. Corning GmbH

4. Corning Inc.

Abstract

<div class="section abstract"><div class="htmlview paragraph">The ever-tightening regulation norms across the world emphasize the magnitude of the air pollution problem. The decision to leapfrog from BS4 to BS6 – with further reduction in emission limits -showed India’s commitment to clean up its atmosphere. The overall cycle emissions were reduced significantly to meet BS6 targets [<span class="xref">1</span>]. However, the introduction of RDE norms in BS6.2 [<span class="xref">1</span>] demanded further reduction in emissions under real time operating conditions – start-stop, hard acceleration, idling, cold start – which was possible only through strategies that demanded a cost effective yet robust solutions. The first few seconds of the engine operation after start contribute significantly to the cycle gaseous emissions. This is because the thermal inertia of the catalytic converter restricts the rate at which temperature of the catalyst increases and achieves the desired “light-off” temperature. The challenge becomes more prominent in the turbocharged engines (where some part of exhaust heat energy is used by the turbine to power the compressor) leading to lower exhaust gas temperatures, specifically at ambient/cold starts. In order to achieve better emission performance, an innovative approach is needed to attain quicker catalyst “light-off” as any change in only the PGM material content/composition may not yield an optimum solution. Though in-cylinder based strategies to increase EGT exist, they impose an additional fuel penalty along with issues like oil dilution. A much better way – avoiding the issues above - to improve the EGT profile is to reduce the thermal inertia of the catalytic converter. This is the idea behind introducing high-porosity substrates. A new Corning<sup>©</sup> FLORA<sup>©</sup> substrate with a higher porosity (55%) compared to the standard substrates (35%) was adopted as the primary substrate (CC1) in a twin brick catalyst design. Higher porosity reduces the thermal inertia of the substrate which in turn aids in rapid catalyst temperature rise and faster light-off. The advanced FLORA<sup>®</sup> substrate when combined with key contributor’s improvements on catalytic converter design and engine calibration strategy on 1.2 L MPFI Revotron<sup>TM</sup> engine, resulted in an improved emissions performance even with a lower PGM content. A reduction of 10 to 30% in regulated pollutants was demonstrated with an approximately 10% lower PGM material loading. The paper describes the multipronged approach taken here to tackle the cold start emissions - redesign of the close coupled catalyst, innovative calibration methodology &amp; the introduction of the high porosity substrate popularly known as FLORA<sup>®</sup>. The work was conducted on a Tata Motors passenger car powered by a 1.2L MPFI Revotron<sup>TM</sup> gasoline engine that successfully met the BS6 Stage II emission norms.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3