Anomaly Detection and Quality Indicators for Digital Maps Used in ADAS Applications

Author:

Veber Christophe1,Bai N Niha2,Bhat Goutam2,Kumar Vikas2,Nair Priyanka2,Li Yu1

Affiliation:

1. Daimler Truck AG

2. Daimler Truck Innovation Center India

Abstract

<div class="section abstract"><div class="htmlview paragraph">With the evolution of Advanced Driver Assistance Systems (ADAS), the gap towards Autonomous Driving (AD) is continuously narrowing. This progress is made possible using digital maps as one of the critical sources along with other ADAS sensors. Correct map data is crucial for the proper functioning of ADAS functions. This demands the need to evaluate the correctness of the map data regularly and efficiently. This work proposes a framework to quantify the map data correctness systematically. The framework algorithmically detects error locations in a map database and then derives KPIs from these error locations. The framework helps to identify issues in the map data related to the internal data consistency or heuristic rules. The framework consists of process automation in Python and map database checks in SQL. The proposed framework defines validation methodology that achieves goals like: (1) KPIs for map data reliability (2) systematic error identification. The framework was evaluated with maps from various sources. The framework yields results quickly and efficiently so that it can be regularly executed well before vehicle testing. In addition, the efficient KPI calculation permits the control of relevant map properties over subsequent map releases.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3