Real-Time Implementable Reduced-Order Energy Model for an Electric Vehicle

Author:

Goyal Vasu1,Dudekula Ahammad Basha1,Stutenberg Kevin2,Robinette Darrell1,Ovist Grant1,Naber Jeffery1

Affiliation:

1. Michigan Technological University, USA

2. Argonne National Laboratory, USA

Abstract

<div>Accurate estimation of vehicle energy consumption plays an important role in developing advanced energy-saving connected automated vehicle technologies such as Eco Approach and Departure, PHEV mode blending, and Eco-route planning. The present study developed a reduced-order energy model with second-order response surfaces and torque estimation to estimate the energy consumption while just relying on the drive cycle information. The model is developed for fully electric Chevrolet Bolt using chassis dynamometer data. The dyno test data encompasses the various EPA test cycles, real-world, and aggressive maneuvers to capture most powertrain operating conditions. The developed model predicts energy consumption using vehicle speed and road-grade inputs for a drive cycle. The accuracy of the model is validated by comparing the prediction results against track and road test data. The developed model was able to accurately predict the energy consumption for track drive cycles within the error of ±4.0% of that measured from the experimental data. Finally, the model has been tested and verified for real-time implementation using the dSPACE MicroAutoBox II HIL test bench.</div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3