Diffusional Interactions and their Applications in Reducing Interdiffusion in Bond Coat Systems Used in Turbine Blades

Author:

Samantaray Biswarupa,Kulkarni Kaustubh

Abstract

<div class="section abstract"><div class="htmlview paragraph">Interdiffusion analysis in multicomponent alloy systems plays a pivotal role in controlling various processes and in designing materials. Interdiffusion of elements also leads to changes in microstructure and properties during service, especially for the materials operating at elevated temperatures. The urge of increasing efficiency of gas turbine engines has led to the demand of higher service temperatures and longer life, which is achieved by the application of thermal barrier coatings (TBC) on Ni based superalloys. To prevent oxidation damage to the superalloy substrate, bond coats are used in which diffusion acts as a key factor influencing the stability and durability of the engine components. Over the last few decades, β-(Ni,Pt)Al coatings have been widely employed as bond coat materials because the presence of Pt enhances oxidation resistance by accelerating diffusion of Al to generate a continuously growing TGO (Thermally grown oxide) layer. However, this also encourages the interdiffusion of Ni and Al between the bond coat and the substrate, which weakens the TBC system. Therefore, a thorough understanding of diffusion behaviour is required in the bond coat materials. In the present study, ternary interdiffusion coefficients are determined in β-(Ni,Pt)Al at 1100 °C. Knowledge of such diffusional interactions would further open new avenues to design bond compositions and process sequences in order to minimize the microstructural changes caused by interdiffusion processes in service.</div></div>

Publisher

SAE International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3