Optimization of Cooling Efficiency in Inverter Assembly Using Numerical and Experimental Analysis

Author:

Govindarasu Anbarasu1,T Sukumar1,Sathyamoorthy Gugainamasivayam1,Subramanian Vivek1

Affiliation:

1. ZF India Pvt. Ltd.

Abstract

<div class="section abstract"><div class="htmlview paragraph">In the coming years, moving towards a hundred percent electric vehicles will be one of the key areas in the automotive industry. The main advantages of using e-mobility are operational flexibility, lower carbon emission and regenerative energy. Thermal management in an e-vehicle plays a vital role for the reliability of the system and any thermal failure can cost a significant amount of money to a company per vehicle. Inverter assembly is widely used to convert Direct Current (DC) to Alternating Current (AC) in the e-mobility platform to operate the motor for vehicle propulsion. It consists of various electronic transmitters, controllers, capacitors, and semi-conductors which will emit an enormous amount of heat during their operation. Since inverters are highly temperature sensitive in nature, it is necessary to improve the temperature distribution in the device. For this reason, adequate cooling system and ventilation is inevitable to keep the components operational. In this study, the thermal characteristic of the inverter was determined using transient thermal analysis considering three different fin geometry used in the heat sink. The two major heat sources are capacitors and Insulated Gate Bipolar Transistor (IGBT), and the heat transfer in the inverter assembly is due to conduction, convection, and radiation. This paper deals with the optimization of inverter fin to meet the cooling efficiency. Also, experimental validation was performed to verify the simulation results and correlation study was carried out to find the results accuracy of the numerical method. Simulation methodology was standardized for the thermal management of an inverter which can be effectively used in the electric vehicle industry.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3