Design of Solar Power Propagation using Silicon Nanowire Photonic Crystals for Electric Vehicles

Author:

P Geetha1

Affiliation:

1. Mohan Babu University

Abstract

<div class="section abstract"><div class="htmlview paragraph">Photonic crystals are materials for controlling and manipulating the light flow. Nano photonic devices deal with behavior of the light in the nanomaterial and devices. It works on the interaction of nano devices with light. They are periodic structures with different refractive indices. The wave guides can be constructed will have sharp and low-loss bending enabling high integration density of several orders of magnitude. On silicon surfaces, nano- and microstructures are created to lower reflection and increase light absorption. It can be applied to enhance infrared (IR) bolometer applications based on MEMS. In this work Silicon nanowires photonic crystals are grown and the electric characteristics and frequency characteristics are modeled, simulated and studied using finite element method. Waveguide is created by removing a set of wires making a path for signal flow for the frequency within the band gap. It is observed that depending on the displacements of the nanowires, waves of particular frequency range is getting reflected which is photonic band gap. The infrared response of silicon nanowires for the IR range (2.5 - 20m), the broadband infrared absorption is found to be boosted by around 2.5 to 3 times when compared to that of polished silicon. The Si nanowires IR sensitivity offers exciting prospective uses as a wideband IR absorbing/sensing mate.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3