Development of Artificial Neural Network Model for CNC Drilling of AA6061 with Coated Textured Tool for Auto Parts

Author:

Katta Lakshmi Narasimhamu1,Pasupuleti Thejasree1,Natarajan Manikandan1,Siva Rami Reddy Narapureddy2,Somsole Lakshmi Narayana1

Affiliation:

1. Mohan Babu University

2. Annamacharya Institute of Technology and Science

Abstract

<div class="section abstract"><div class="htmlview paragraph">With the progress of manufacturing industries being critical for economic development, there is a significant requirement to explore and scrutinize advanced materials, particularly alloy materials, to facilitate the efficient utilization of modern technologies. Lightweight and high-strength materials, such as aluminium alloys, are extensively suggested for various applications requiring strength and corrosion resistance, including but not limited to automotive, marine, and high-temperature applications. As a result, there is a significant necessity to examine and evaluate these materials to promote their effective use in the manufacturing sectors. This research paper presents the development of an Artificial Neural Network (ANN) model for Computer Numerical Control (CNC) drilling of AA6061 aluminium alloy with a coated textured tool. The primary aim of the study is to optimize the drilling process and enhance the machinability of the material. The ANN model utilizes spindle speed, feed rate and Coolant type as input parameters, while the surface roughness, Material removal rate and temperature are the output parameters. A coated textured tool is chosen due to its exceptional performance over conventional drilling tools drilling. The textured surface helps in efficient chip evacuation, which reduces friction and heat generation during machining, while the coating on the tool improves its wear resistance and prolongs its lifespan. Experimental data obtained from CNC drilling of AA6061 with the coated textured tool is used to train and test the ANN model. The results demonstrate that the ANN model provides accurate predictions of the output performance of the machined hole under different drilling conditions.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3