Impact Analysis of an Alternate Environment Friendly Refrigerant Deployed in the Air Conditioning System of IC Engine and Electric Vehicles

Author:

Maurya Anurag1,Mehta Bhavik1,Sardesai Suresh1,Swarnkar Sumit1,Venu Santosh1,Kapoor Sangeet1

Affiliation:

1. Tata Motors, Ltd.

Abstract

<div class="section abstract"><div class="htmlview paragraph">Today, most vehicles in developing countries are equipped with air conditioning systems that work with Hydro-Fluoro-Carbons (HFC) based refrigerants. These refrigerants are potential greenhouse gases with a high global warming potential (GWP) that adversely impact the environment. Without the rapid phasedown of HFCs under the Kigali Amendment to the Montreal Protocol and other actions, Earth will soon pass climate tipping points that will be irreversible within human time dimensions. Up to half of national HFC use and emissions are for the manufacture and service of mobile air conditioning (MAC). Vehicle manufacturers supplying markets in non-Article 5 Parties have transitioned from HFC-134a (ozone-safe, GWP = 1400; TFA emissions) to Hydro-Fluoro-Olefin, HFO-1234yf (ozone-safe, GWP &lt; 1; TFA emissions) due to comparable thermodynamic properties. However, the transition towards the phasing down of HFCs across all sectors is just beginning for Article 5 markets. Patents on R-1234yf will soon expire, just as scarcity is likely to drive the price of R-134a to historic highs.</div><div class="htmlview paragraph">This work consists of two case studies, specific to an Internal Combustion Engine (ICE) and an Electric Vehicle (EV). Two different refrigeration system architectures are examined. Both the shortlisted vehicles have different and complex AC system architectures. Complex AC system architectures are selected in this study with the objective of understanding and deploying the learnings in vehicles with less complex and simpler AC system architectures. The ICE vehicle selected for the study has a dual AC configuration with two cooling points (front and rear), using DX architecture. In the EV, an architecture similar to that of the ICE vehicle is deployed for cabin cooling, but unlike the ICE vehicle, it has a secondary coolant-based loop provisioned for battery thermal management. For this study, the baseline HFC-134a refrigerant is replaced by a ‘drop-in’ alternate low-GWP HFO-1234yf refrigerant in both vehicles.</div><div class="htmlview paragraph">This study focuses on cooling performance evaluation with existing HFC refrigerant and proposed HFO refrigerant for both AC system architectures, gap identification, and proposing common and unique solutions for bridging the performance gaps.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3