Experimental Investigations on a Novel Expansion Engine for Waste Heat Recovery

Author:

Lang M.1,Bechter C.2,Amann T.2,Schurl S.1,Bretterklieber N.1

Affiliation:

1. TU Graz, Institute of Internal Combustion Engines and Thermo

2. Mahle König Kommanditgesellschaft GmbH & Co KG

Abstract

<div class="section abstract"><div class="htmlview paragraph">Waste heat recovery in medium-power systems below 400 kW waste heat power asks for a novel expansion engine concept for water-based Rankine steam cycles. The aim is to combine the advantages of reciprocating piston engines and of turbines at reasonable costs. The so-called rotational wing-piston expander uses two pivoting shafts, each holding two wing-like pistons within one housing, that perform a cyclic movement relative to each other. Thus, four working chambers with varying volumes are shaped, each experiencing repetitive compression and expansion. This solution offers the possibility of sealing the lubricated gearbox against the steam-flooded section containing the working chambers with rotational seals.</div><div class="htmlview paragraph">For the development of the expansion engine, starting with an initial approach for a functional prototype, experimental investigations are carried out. Motored tests are performed in order to scrutinize kinematics and mechanics. Tests with pressurized air for enhanced load on the components - without applying the corrosion and thermal stress of hot steam - are assessed. The structural problems at the piston mount during the test runs reveal improvement potential and lead to its highly effective redesign. The occurring leakage at the rotational and piston seals and the high friction demand for improvements in further investigations.</div><div class="htmlview paragraph">This paper treats the design and layout of the novel expansion engine concept, the special challenges of test bench investigations, especially concerning measurement equipment and test bench requirements, and shows the most important findings and insights gained during the experimental investigations of the engine, as well as possibilities for improvement.</div></div>

Publisher

Society of Automotive Engineers of Japan

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3