Development of a method to predict performance of sensing system with air mass flow sensor by CFD

Author:

Suematsu Kosuke1,Nosaka Kento1,Okazaki Tadao1

Affiliation:

1. Kubota Corporation

Abstract

<div class="section abstract"><div class="htmlview paragraph">With the strengthening of exhaust gas regulations such as EU Stage 5 and China’s 4th regulation, the engine such as external EGR and aftertreatment device has become complicated. In addition, Kubota’s industrial engines are used not only in agricultural and construction machines but also in various machines with different applications around the world, there are many variations of intake and exhaust systems, and the engines are diversified.</div><div class="htmlview paragraph">For an engine adopting an external EGR and a aftertreatment device, a hot wire type mass air flow rate sensor is widely adopted in an intake piping in order to control the EGR valve appropriately and the regeneration control of the DPF. However, it is known that the sensitivity of this sensing system varies depending on the shape of the intake piping. When the sensitivity varies, the engine is controlled based on the incorrect air mass flow rate, so that the exhaust performance may be deteriorated. It is confirmed that the variation of sensitivity does not exceed the limit value by measuring the sensitivity of this sensing system using the prototype and considering the variation of the assembling error and the like. If the sensitivity variation exceeds the limit value, we must change the shape and mounting position of the intake piping. Therefore development lead time will be prolonged in order to design intake piping, prototype, shipment from overseas and experiment again.</div><div class="htmlview paragraph">In this paper, we investigate the factors that vary the sensitivity of this sensing system by flow rig test of the intake piping and a CFD focusing on the convective heat transfer amount of the hot wire inside the sensor. It was confirmed that the influence by velocity and turbulent kinetic energy were large. CFD is carried out with various intake piping, limit value are set based on the characteristic of physical quantity with large sensitivity variation, and we developed method to predict the possibility that the sensitivity variation of the air mass flow rate sensor exceed the limit value before prototyping.</div></div>

Publisher

Society of Automotive Engineers of Japan

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3