Experimentally Based Methodology to Evaluate Fuel Saving and CO <sub>2</sub> Reduction of Electrical Engine Cooling Pump during Real Driving

Author:

Di Bartolomeo Marco,Di Battista Davide,Cipollone Roberto

Abstract

<div>Engine thermal management (ETM) is a promising technology that allows the reduction of harmful emissions and fuel consumption when the internal combustion engine (ICE) is started from a cold state. The key technology for ETM is the decoupling of the cooling pump from the crankshaft and the actuation of the pump independently. In this article, an electric engine cooling pump has been designed through a novel experimentally based procedure and operated on a vehicle equipped with an advanced turbocharged gasoline engine, particularly interesting for its hybridization potential. In the first phase, a dedicated experimental campaign was conducted off board on an engine identical to the one equipped in the vehicle to assess the characteristics of the cooling circuit and the reference pump performances. The experimental data have been used to design an electric pump with a best efficiency point (BEP) located in a region more representative of the real operating conditions faced by the vehicle during real driving. Once prototyped, the electric pump has been compared to the reference mechanical one on a real driving mission profile whose parameters have been experimentally evaluated. The comparison was made in the same operating conditions of flow rate and the pressure head acting on the revolution speed of the prototype to focus the attention on the effect of the different design choices made possible by the electric actuation. The procedure can evaluate the pump-related fuel consumption, whatever the real vehicle speed profile and the actuation of the pump. The results show that in a driving cycle with urban, extra-urban, and highway phases, the electric pump absorbs 66% less power compared to the mechanical one, which translates into a 0.55 gCO<sub>2</sub>/km specific emission reduction. This demonstrates the validity of the novel design procedure together with the benefits of the electric actuation.</div>

Publisher

SAE International

Subject

Fuel Technology,Automotive Engineering,General Earth and Planetary Sciences,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A New Design Rule of Engine Coolant Pump in ICEs Focused to Energy Consumption Reduction;SAE Technical Paper Series;2024-06-12

2. The Effects of the Oil Temperature Warm-Up on Engine Fuel Consumption;SAE Technical Paper Series;2024-04-09

3. Editorial: New developments in vehicle thermal management;Frontiers in Mechanical Engineering;2023-07-24

4. Editorial: New developments in vehicle thermal management;Frontiers in Mechanical Engineering;2023-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3