Modeling and Comparing the Total Cost of Ownership of Passenger Automobiles with Conventional, Electric, and Hybrid Powertrains

Author:

Mittal Vikram1,Shah Rajesh2

Affiliation:

1. United States Military Academy, Department of Systems Engineering, USA

2. Koehler Instrument, USA

Abstract

<div>The global automotive industry’s shift toward electrification hinges on battery electric vehicles (BEV) having a reduced total cost of ownership compared to traditional vehicles. Although BEVs exhibit lower operational costs than internal combustion engine (ICE) vehicles, their initial acquisition expense is higher due to expensive battery packs. This study evaluates total ownership costs for four vehicle types: traditional ICE-based car, BEV, split-power hybrid, and plug-in hybrid. Unlike previous analyses comparing production vehicles, this study employs a hypothetical sedan with different powertrains for a more equitable assessment. The study uses a drive-cycle model grounded in fundamental vehicle dynamics to determine the fuel and electricity consumption for each vehicle in highway and urban conditions. These figures serve a Monte Carlo simulation, projecting a vehicle’s operating cost over a decade based on average daily distance and highway driving percentage. Results show plug-in hybrids generally offer the most economical choice. Due to the BEVs’ heavier weight and battery cost, they only become more cost-effective than plug-in hybrids after 160 km daily travel, associated with only a small percentage of drivers in the United States. Nevertheless, they remain cheaper than conventional vehicles for most distances. The study also investigates the effects of government subsidies, battery cost, and weight on overall expenses for each powertrain. It concludes that opting for less expensive, albeit heavier batteries would generally reduce EV ownership costs for consumers.</div>

Publisher

SAE International

Subject

Management, Monitoring, Policy and Law,Engineering (miscellaneous),Aerospace Engineering,Transportation,Automotive Engineering,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3