Dynamic Performance Optimization of Ball Joints with Cross Groove for Automotive Driveshaft System

Author:

Zhan Haojing1,Wan Lixiang1,Wu Xiaoyong2,Hou Qiufeng2,Shangguan Wenbin3

Affiliation:

1. Southwest Jiaotong University

2. Zhejiang Xianglong Manufacturing Co., Ltd.

3. South China University of Technology

Abstract

<div class="section abstract"><div class="htmlview paragraph">The ball joint with cross groove offers both angular and plunging motion. When transmitting the same torque, the cross groove ball joint is lighter than other plunging Constant Velocity Joints (CVJs). It is crucial for the design of the joint and enhancing the contact fatigue life of the raceway to accurately estimate component loads of the ball joints with cross groove. In this study, the transmission efficiency of the joint and the peak value of contact force between ball and the track are used as evaluation indexes for characterizing dynamic performance of the joint. A multibody dynamic model of the joint is established to calculate its dynamic performance. In the model, the contact properties and friction characteristics of the internal structures were modeled, and a nonlinear equivalent spring and damping model was adopted for estimating the contact force. The transmission efficiency loss of the cross groove joint was measured and compared with the calculated values. Taking friction coefficient, pitch radius, ball diameter, pressure angle, raceway inclination angle, and similarity as design variables, the dominate influencing factors on the dynamic performance of the joint were analyzed. A proxy model for estimating transmission efficiency loss and contact force peak of the joint was established based on the established multibody dynamics model of the joint. Using the presented proxy model and the NSGA2 genetic algorithm, and take the five structural parameters of the CVJ as the optimization design variables, and the transmission efficiency and contact force peak of the joint as the optimization objectives, and the optimal solutions of the parameters were obtained.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3