Non-Destructive Parameterization of Lithium-Ion Batteries via Machine Learning with Simulated EIS Data

Author:

Alidadi Pasha1,Schlösser Anton Emil Kaspar1,Salek Farhad2

Affiliation:

1. Technische Universität Berlin

2. Oxford Brookes University

Abstract

<div class="section abstract"><div class="htmlview paragraph">Lithium-ion batteries are ubiquitous in modern energy storage applications, necessitating efficient methods for assessing their state and performance. This study explores a non-destructive approach to extract vital battery parameters using machine learning techniques applied to simulated Electrochemical Impedance Spectroscopy (EIS) data. EIS is a powerful diagnostic tool for batteries and provides a safe and repeatable alternative to the physical intrusion of battery dismantling, which could alter the batteries properties. The research focuses on the design and training of machine learning models for accurate prediction of battery parameters within the widely used P2D model. By leveraging the power of machine learning, this approach aims to accurately characterize the battery parameters using an electrochemical model as opposed to the less accurate equivalent circuit models, contributing to the reliability and longevity of lithium-ion batteries in diverse applications. The second part of this paper incorporates real-life experimental EIS data by utilizing an improved version of an open-source model called “Impedance Analyzer”. Multiple approaches have been explored and discussed to leverage machine learning algorithms to accurately estimate the battery parameters. The findings of this study pave the way for more robust, non-destructive battery assessment methods, crucial for advanced state of health prediction models of lithium-ion batteries.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3