Optimization of Mount Bracket on Whine Noise Performance for a Battery Electric Vehicle

Author:

Ding Chao1,Jiang Xiaodong1,He Weikang1,Yu Huiqiang1,Ma Yan1

Affiliation:

1. Zhejiang LeapPower Technology Co.,Ltd.

Abstract

<div class="section abstract"><div class="htmlview paragraph">Recently, the market share of electric vehicles is becoming increasingly obvious. It is expected that electric vehicles are quieter than fuel vehicles. Actually, without the cover of low-frequency engine noise, the high-frequency noise of electric vehicles is more prominent, which seriously affect the perceived sound quality. The present work is related tonal noise resulted from electric drive system (EDS), which is one of the fundamental noise sources for battery electric vehicle (BEV). The dominant noise sources observed in the vehicle interior are 26th and 36th orders for reducer and drive motor separately. Poor vibration isolation of right mounting system is the fundamental cause identification of EDS noise which has been investigated with objective measurements and simulation tools. Dynamic stiffness analysis is carried out to optimize the passive bracket. An engineering solution is implemented to enhance bracket to improve resonance effect. The test results after improvement scheme has a 10dB(A) noise reduction for the whine noise of vehicle interior.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3