Waste Heat Recovery via Inverted Brayton Cycle Bottoming a Twin-Turbo Gasoline Engine

Author:

Salek Farhad1,Babaie Meisam2,Zare Ali3,Yang Junfeng2,Bonatesta Fabrizio1

Affiliation:

1. Oxford Brookes University

2. University Of Leeds

3. Deakin University

Abstract

<div class="section abstract"><div class="htmlview paragraph">Air pollution from internal combustion engines poses a significant apprehension for both global warming and public health on a worldwide scale. The adoption of hybridization and electrification within the vehicular fleet can help to tackle these challenges. This study evaluates a waste heat recovery system for electric power generation, based on the Inverted Brayton Cycle (IBC) coupled with a high-performance gasoline engine. The Mercedes-Benz CLS 350 CGI engine platform was modelled in AVL Boost software and validated against the reference published experimental data. The engine model was then modified to incorporate the IBC to study the performance of the proposed hybrid propulsion system. The IBC power output was calculated at a wide range of engine speed and load, and results showed that up to 18 kW of extra power output can be generated by the IBC system. Compared to the IC engine in isolation, by employing the IBC in hybrid series powertrain configuration, electrical power output increased by up to 20% at high speed and load. Moreover, IBC coupling in a parallel hybrid configuration decreased the main engine fuel consumption by 10-20% at high engine load.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3