Trim-Structure Interface Modelling and Simulation Approaches for FEM Applications

Author:

Bronzova Mariia1,Bocquillet Arnaud1,Schanz Martin2

Affiliation:

1. BMW Group

2. Graz University of Technology

Abstract

<div class="section abstract"><div class="htmlview paragraph">Trim materials are often used for vibroacoustic energy absorption purposes within vehicles. To estimate the sound impact at a driver’s ear, the sub-structuring approach can be applied. Thus, transfer functions are calculated starting from the acoustic source to the car body, from the car body to the trim and, finally, from the trim to the inner cavity where the driver is located. One of the most challenging parts is the calculation of the transfer functions from the car body inner surface to the bottom trim surface. Commonly, freely laying mass-spring systems (trims) are simulated with a fixed or in some cases with a sliding boundary condition at the trim-structure interface. As a result, interface phenomena such as friction, stick-slip or discontinuities are not considered. Such approaches allow for faster simulations but result in simulations strongly overestimating the energy transfer, particularly in the frequency range where the mass-spring system’s resonances take place.</div><div class="htmlview paragraph">In the current work, two methods to model and simulate the above-mentioned interface phenomena have been studied. To provide reference results for simulations, a series of shaker measurements have been conducted on various trim samples with different boundary conditions. Further on, frequency response functions have been calculated and used as target functions for simulations with different interface modelling strategies. As the first simulation method to account for the interface influence, an interface discontinuity approach is discussed. As the agreement between simulation and reference results has been shown to be insufficient, an orthotropic intermediate layer has been proposed instead. Moreover, Morris sensitivity analysis has been performed to determine most influential parameters of the intermediate layer. The dependency of the influential parameter values on the trim system configuration has been investigated with the help of genetic algorithms.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3