Charging Infrastructure for Employer Parking – Real Data Analysis and Charging Algorithms for Future Customer Demands

Author:

Mehlig Dennis1,Krumbholz Matthias2,Gerstadt Max2

Affiliation:

1. MAHLE New Mobility Solutions GmbH

2. Mahle chargeBIG GmbH

Abstract

<div class="section abstract"><div class="htmlview paragraph">The mobility industry with its entire ecosystem is currently striving towards sustainable solutions, which leads to a continuous production ramp-up of electrified vehicles. The parallel extension of the charging infrastructure is needed but faced with various challenges like high investments and power limitations of local electrical grid connection. To fulfill the user requirements of electrified vehicle owners, large-scaled but cost-efficient charging systems for different parking scenarios in residential buildings, at work or at the destination are essential. MAHLE chargeBIG offers large-scaled and centralized charging infrastructure with more than 2,000 already installed charging points since 2019. This paper is a first scientific publication with an in-dept evaluation of the large-scaled charging infrastructure usage. Based on backend data of multiple MAHLE chargeBIG charging infrastructure installations with more than 600 charging points, more than 70,000 recorded charging events are analyzed. It proves that a single-phase charging concept offers sufficient charging power and is able to master multiple charging events by fulfilling customer requirements despite an unexpanded electrical grid infrastructure. As simulated in already published studies [<span class="xref">1</span>,<span class="xref">2</span>], 3-5 kW per vehicle are a sufficient charging power to recharge the daily electricity demand in employer parking areas with less than 15 kWh in average. In combination with smart charging algorithms, the system can avoid charging power limitations caused by the grid connection and allows the integration in smart grid company environments.</div></div>

Publisher

SAE International

Reference16 articles.

1. Ewert , S. , Krepulat , W. , Gerstadt , M. and Stamer , H. 2020

2. Fischer , M. , Elias , J. , Hardt , C. and Bogenberger , K. Simulation.Based Evaluation of Charging Infrastructure Concepts: The Park and Ride Case World Electric Vehicle Journal 2022

3. S&P Global Mobility 2023

4. European Automobile Manufacturers’ Association (ACEA): Research Whitepaper 2022

5. Bayern Innovativ GmbH 2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3