Diesel Oxidation Catalyst Performance with Biodiesel Formulations

Author:

Lakkireddy Venkata1,Weber Phillip1,McCormick Robert2,Howell Steve3

Affiliation:

1. Southwest Research Institute

2. National Renewable Energy Laboratory

3. MARC-IV Consulting

Abstract

<div class="section abstract"><div class="htmlview paragraph">Biodiesel (i.e., mono-alkyl esters of long chain fatty acids derived from vegetable oils and animal fats) is a renewable diesel fuel providing life-cycle greenhouse gas emission reductions relative to petroleum-derived diesel. With the expectation that there would be widespread use of biodiesel as a substitute for ultra-low sulfur diesel (ULSD), there have been many studies looking into the effects of biodiesel on engine and aftertreatment, particularly its compatibility to the current aftertreatment technologies. The objective of this study was to generate experimental data to measure the effectiveness of a current technology diesel oxidation catalysts (DOC) to oxidize soy-based biodiesel at various blend levels with ULSD. Biodiesel blends from 0 to 100% were evaluated on an engine using a conventional DOC. In the steady-state performance test where fuel dosing rate was increased at fixed DOC inlet temperature, B20 performed similarly to ULSD at the lowest flow rate or exhaust temperature over 340°C for medium and high flows. B50 blends performed nearly as well under most conditions. Higher blends exhibited reduced thermal efficiency and DOC outlet temperature with increasing dosing rate under most conditions and required exhaust temperatures over 400°C to achieve or nearly achieve performance similar to ULSD. In the steady-state light of test where fuel dosing rate is fixed but exhaust temperature is increased incrementally, B20 generally performed similarly to ULSD at the highest inlet temperature, with only minor deficiencies at lower temperatures. Higher blends exhibited lower thermal efficiency and did not achieve as high DOC outlet temperatures. In the transient light-off test light-off temperature for ULSD was typically less than 225°C, while for B100 it ranged from 290°C to 330°C. Based on the data set, it can be concluded that biodiesel fuels have a higher light-off temperature primarily because of their higher boiling points, with a minor secondary impact of their lower energy content.</div></div>

Publisher

SAE International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3