A Systematic Approach for Creation of SOTIF’s Unknown Unsafe Scenarios: An Optimization based Method

Author:

Singh Tajinder1,van Hassel Edwin1,Sheorey Akshay1,Alirezaei Mohsen1

Affiliation:

1. Siemens Digital Industries Software

Abstract

<div class="section abstract"><div class="htmlview paragraph">Verification and validation (V&amp;V) of autonomous vehicles (AVs) is a challenging task. AVs must be thoroughly tested, to ensure their safe functionality in complex traffic situations including rare but safety-relevant events. Furthermore, AVs must mitigate risks and hazards that result from functional insufficiencies, as described in the Safety of the Intended Functionality (SOTIF) standard. SOTIF analysis includes iterative identification of driving scenarios that are not only unsafe, but also unknown. However, identifying SOTIF’s unknown-unsafe scenarios is an open challenge. In this paper we proposed a systematic optimization-based approach for identification of unknown-unsafe scenarios. The proposed approach consists of three main steps including data collection, feature extraction and optimization towards unknown unsafe scenarios. In the data collection step, we proposed an efficient way of data collection by focusing on key areas of the Operational Design Domain (ODD) (e.g., intersections). In step 2, the graph-based method is used to model the selected region(s) in the ODD. The generated graph is used to aggregate actor behaviors recorded during data collection in different parameter distributions (e.g. speeds or offset to center of the lane). In step 3, the generated graph for road layout and parameter distributions for actors are used in an optimization algorithm. The objective function for the optimization algorithm consists of a criticality metric, a proprietary KPI to identify unknown scenarios here called unexpectedness, multiplied by probability of scenario calculated from actor probability distributions. Using the objective function, the optimization algorithm can identify unknown-unsafe scenarios with highest probability for the selected region(s) in the ODD. The approach is implemented on an intersection and identified unknown-unsafe scenarios are reported in the paper.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3