Efficient Fatigue Performance Dominated Optimization Method for Heavy-Duty Vehicle Suspension Brackets under Proving Ground Load

Author:

Tong Jiachi1,Meng Dejian1,Wang Lei2,Gao Yunkai1,Yang James3

Affiliation:

1. Tongji University

2. Beiben Trucks Group Co., Ltd.

3. Texas Tech University

Abstract

<div class="section abstract"><div class="htmlview paragraph">Lightweight design is a key factor in general engineering design practice, however, it often conflicts with fatigue durability. This paper presents a way for improving the effectiveness of fatigue performance dominated optimization, demonstrated through a case study on suspension brackets for heavy-duty vehicles. This case study is based on random load data collected from fatigue durability tests in proving grounds, and fatigue failures of the heavy-duty vehicle suspension brackets were observed and recorded during the tests. Multi-objective fatigue optimization was introduced by employing multiaxial time-domain fatigue analysis under random loads combined with the non-dominated sorting genetic algorithm II with archives. While evaluating fatigue life within optimization loops, particularly for multiaxial random load fatigue in the time domain, is time-intensive, this study is to improve computational efficiency in two strategies: 1) the dynamic adjustment of target nodes from the finite element model, using a weighted sum prior to performing fatigue damage prediction, 2) considering the actual cracking positions observed during the durability test, weld seams, identified as high-risk areas, were incorporated into the fatigue life prediction and optimization process. The fatigue evaluation results were in alignment with durability test outcomes of the suspension brackets, and the final optimization results were explored in both design and objective fields. The Pareto front was then utilized to show the trade-off between the conflicting objectives of lightweight design and enhanced fatigue performance to meet the enhanced durability requirements. This underscores the methodology's practicality and reliability in improving the durability and lightweight performance of suspension components.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3