Modeling of Vent Gas Composition during Battery Thermal Runaway

Author:

Hariharan Deivanayagam1,Gundlapally Santhosh1

Affiliation:

1. Gamma Technologies LLC

Abstract

<div class="section abstract"><div class="htmlview paragraph">The growing global adoption of electric vehicles (EVs) emphasizes the pressing need for a comprehensive understanding of thermal runaway in lithium-ion batteries. Prevention of the onset of thermal runaway and its subsequent propagation throughout the entire battery pack is one of the pressing challenges of lithium-ion batteries. In addition to generating excess heat, thermal runaway of batteries also releases hazardous flammable gases, posing risks of external combustion and fires. Most existing thermal runaway models in literature primarily focus on predicting heat release or the total amount of vent gas. In this study, we present a model capable of predicting both heat release and the transient composition of emitted gases, including CO, H<sub>2</sub>, CO<sub>2</sub>, and hydrocarbons, during thermal runaway events. We calibrated the model using experimental data obtained from an 18650 cell from the literature, ensuring the accuracy of reaction parameters. We employ this developed model to investigate how different state-of-charge (SOC) levels (25%, 50%, 75%, and 100%) impact thermal runaway events and subsequent gas composition. Our analysis of three major input parameters: pre-exponent multiplier, activation energy, and specific heat release, across the SOC levels, revealed similar reaction rates for SOC levels between 50% and 100%, except for the anode, with significant difference for 25% SOC parameters, resulting in lower cell temperatures during thermal runaway.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3