Metrics Based Design of Electromechanical Coupled Reduced Order Model of an Electric Powertrain for NVH Assessment

Author:

Ricardo Souza Marcos1,Offner Guenter2,Mohammadpour Mahdi1,Andreou Panagiotis1,Theodossiades Stephanos1

Affiliation:

1. Loughborough University

2. AVL LIST GmbH

Abstract

<div class="section abstract"><div class="htmlview paragraph">Electric vehicles offer cleaner transportation with lower emissions, thus their increased popularity. Although, electric powertrains contribute to quieter vehicles, the shift from internal combustion engines to electric powertrains presents new Noise, Vibration, and Harshness challenges. Unlike traditional engines, electric powertrains produce distinctive tonal noise, notably from motor whistles and gear whine. These tonal components have frequency content, sometimes above 10 kHz. Furthermore, the housing of the powertrain is the interface between the excitation from the driveline via the bearings and the radiated noise (NVH). Acoustic features of the radiated noise can be predicted by utilising the transmitted forces from the bearings. Due to tonal components at higher frequencies and dense modal content, full flexible multibody dynamics simulations are computationally expensive. Based on previously developed metrics for sound quality, a methodology is proposed with the requirements to design a reduced order model, coupling analytical solutions for the electrical motor along with lumped parameter powertrain modelling. Namely, for an adequate representation of the tonal content, the proposed model considers the harmonic excitations of the electric motor and torque ripple, time-varying stiffness and backlash for the meshing gears and flexibility of the housing at the bearing connection points. The reduced order model predicts the transmitted bearing forces, enabling an overview of the sound quality of the radiated noise with lower computational time and complexity.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3