Vehicle Yaw Stability Model Predictive Control Strategy for Dynamic and Multi-Objective Requirements

Author:

Wang Hanlin1,Wu Jian1,Chen Zhicheng1,He Rui1,Li Haiqiao1

Affiliation:

1. Jilin University

Abstract

<div class="section abstract"><div class="htmlview paragraph">Vehicle yaw stability control (YSC) can actively adjust the working state of the chassis actuator to generate a certain additional yaw moment for the vehicle, which effectively helps the vehicle maintain good driving quality under strong transient conditions such as high-speed turning and continuous lane change. However, the traditional YSC pursues too much driving stability after activation, ignoring the difference of multi-objective requirements of yaw maneuverability, actuator energy consumption and other requirements in different vehicle stability states, resulting in the decline of vehicle driving quality. Therefore, a vehicle yaw stability model predictive control strategy for dynamic and multi-objective requirements is proposed in this paper. Firstly, the unstable characteristics of vehicle motion are analyzed, and the nonlinear two-degree-of-freedom vehicle dynamics models are established respectively. Secondly, the vehicle yaw stability control strategy is designed: The two-line method is used to extract the boundary of <span class="formula inline"><math display="inline" id="M1"><mi>β</mi><mo>−</mo><mover accent="true"><mi>β</mi><mo>̇</mo></mover></math></span> phase portrait. On this basis, the geometric distance quantization method is applied to establish the dynamic mapping relationship between the multi-objective requirements of driving stability, yaw maneuverability, actuator energy consumption and the weight of YSC cost function in different vehicle stability states. The model predictive theory and rule-based single wheel differential braking technology are applied to achieve vehicle stability control. Finally, a joint simulation platform is built based on vehicle dynamics simulation software CarSim and MATLAB/Simulink for testing and verification. The simulation results show that the YSC designed in this paper can adaptively adjust the controller output according to the dynamic multi-objective requirements in different vehicle stability states, and effectively improve the driving quality of the vehicle under strong transient conditions.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3