Wheel Drive Unit Lift Corrections in Automotive Wind Tunnels

Author:

Josefsson Erik1,Urquhart Magnus2,Sebben Simone1

Affiliation:

1. Chalmers University of Technology

2. Volvo Cars

Abstract

<div class="section abstract"><div class="htmlview paragraph">Correct simulations of rotating wheels are essential for accurate aerodynamic investigations of passenger vehicles. Therefore, modern automotive wind tunnels are equipped with five-belt moving ground systems with wheel drive units (WDUs) connected to the underfloor balance. The pressure distribution on the exposed areas of the WDU belts results in undesired lift forces being measured which must be considered to obtain accurate lift values for the vehicle. This work investigates the parasitic WDU lift for various configurations of a crossover SUV using numerical simulations that have been correlated to wind tunnel data. Several parameters were considered in the investigation, such as WDU size, WDU placement, tyre variants and vehicle configurations.</div><div class="htmlview paragraph">The results show that the parasitic lift is more sensitive to the width than the length of the WDU. However, the belt length is also important to consider, especially if the wheel cannot be placed centred. Varying the tyre pattern changes the parasitic lift and the effect is coupled to the rim design. The lift correction reduces for wider tyres, as there is less exposed belt area. Modifying the tyre shoulder and sidewall geometry or considering different vehicle configurations only results in minor differences. Finally, fitting the same wheels to a different vehicle, causes deviations only at the rear wheels due to differences in the shielding from the front wheel wake.</div><div class="htmlview paragraph">Generally, the largest differences in parasitic lift occur when there is a shift in the balance between the inner and outer low-pressure zones at the upstream tyre shoulders. In this work, such changes are observed when there is a considerable alteration of the separation point on the tyre shoulder or the amount of outwash from the wheel wake.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3