Differential Flatness-Based Control of Switched Reluctance Motors

Author:

Niazi Yasaman1,Gholaminejad Azadeh2,Valencia Garcia Diego Fernando2,Dhale Sumedh1,Nahid-Mobarakeh Babak2

Affiliation:

1. McMaster Automotive Research Centre (MARC)

2. McMaster University

Abstract

<div class="section abstract"><div class="htmlview paragraph">This paper presents a Differential Flatness-Based Control (FBC) approach for the current control of Switched Reluctance Machines (SRMs), a potential candidate for the automotive industry. The main challenges in SRM control methods stem from motor nonlinearity. In electrical drives, FBC has been applied in doubly-fed induction generators, permanent magnet motors, and magnet-assisted synchronous reluctance motors. Among the few papers that have used FBC for SRM, this research distinguishes itself by addressing current control and considering both current and flux-linkage separately as a flat output, an approach not found in previous literature. The performance of the proposed controls is assessed in a three-phase 12/8 SRM against the conventional hysteresis current controller (HCC) and PI controller. Additionally, it is integrated into a torque-sharing function based on a maximum torque per ampere control strategy. This work uses the Integral Time Absolute Error (ITAE) criterion to compare different control methods. The current ITAE of FBC has been reduced by 50% compared to HCC and 41% compared to the PI controller. This controller is well-suited for transportation applications, mainly traction and propulsion in vehicles, due to its low loss and torque ripple compared to conventional controllers. Moreover, dynamic response to changes in load and dyno speed evidence the enhanced performance of the proposed technique.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3