Numerical Investigation of Injection and Mixture Formation in Hydrogen Combustion Engines by Means of Different 3D-CFD Simulation Approaches

Author:

Schmelcher Robin1,Kulzer Andre1,Gal Thomas2,Vacca Antonino2,Chiodi Marco2

Affiliation:

1. IFS, University of Stuttgart

2. FKFS

Abstract

<div class="section abstract"><div class="htmlview paragraph">For the purpose of achieving carbon-neutrality in the mobility sector by 2050, hydrogen can play a crucial role as an alternative energy carrier, not only for direct usage in fuel cell-powered vehicles, but also for fueling internal combustion engines. This paper focuses on the numerical investigation of high-pressure hydrogen injection and the mixture formation inside a high-tumble engine with a conventional liquid fuel injector for passenger cars. Since the traditional 3D-CFD approach of simulating the inner flow of an injector requires a very high spatial and temporal resolution, the enormous computational effort, especially for full engine simulations, is a big challenge for an effective virtual development of modern engines. An alternative and more pragmatic lagrangian 3D-CFD approach offers opportunities for a significant reduction in computational effort without sacrificing reliability. The detailed and the lagrangian approach are both validated against optical measurements inside a spray chamber, provided by Robert Bosch GmbH to ensure an accurate reproduction of the injection process in the simulation. The investigation shows, that the lagrangian approach enables 30 times bigger time steps, while maintaining comparable results. The effects on jet propagation and mixture formation are examined in a virtual 3D-CFD single cylinder engine test bench under the consideration of a boosted high tumble engine concept and direct injection up to 220 bar. A variation of injection timings and the air-to-fuel ratio are carried out at two load points and validated with the test bench data. By means of the matching simulation results, it is therefore possible to explain trends in engine behavior and make detailed statements about the interaction of the hydrogen high-pressure injection and the mixture formation. Particular attention was hereby paid to the influences on gas exchange losses, NOx emissions and engine efficiency.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3