Optimizing Urban Traffic Efficiency via Virtual Eco-Driving Featured by a Single Automated Vehicle

Author:

Ozkan Mehmet F.1,Gupta Shobhit1,D'Alessandro Stefano1,Spano Matteo2,Kibalama Dennis1,Paugh Jacob1,Canova Marcello1,Stockar Stephanie1,Reese Ronald A.3,Wasacz Bryon3

Affiliation:

1. Ohio State University

2. Politecnico di Torino

3. Stellantis NV

Abstract

<div class="section abstract"><div class="htmlview paragraph">In the face of growing concerns about environmental sustainability and urban congestion, the integration of eco-driving strategies has emerged as a pivotal solution in the field of the urban transportation sector. This study explores the potential benefits of a CAV functioning as a virtual eco-driving controller in an urban traffic scenario with a group of following human-driven vehicles. A computationally inexpensive and realistic powertrain model and energy management system of the Chrysler Pacifica PHEV are developed with the field experiment data and integrated into a forward-looking vehicle simulator to implement and validate an eco-driving speed planning and energy management strategy assuming longitudinal automation. The eco-driving algorithm determines the optimal vehicle speed profile and energy management strategy. Then, a microscopic traffic model that represents the driving behaviors of the human-driven vehicle queue is introduced to investigate the overall energetic impact of the eco-driving strategy on human-driven vehicles in urban routes. Two different scenarios are considered, one involving human-driven vehicles following a lead human-driven vehicle, and the other with the human-driven vehicles led by the CAV. The results reveal that CAV not only achieves high energy savings for the CAV itself but also improves the fuel economy of the following human-driven vehicles without featuring any cooperative driving. The findings highlight that even with a low penetration rate, CAVs could reduce the overall energy usage of a cohort of uncoordinated vehicles in urban traffic scenarios by as much as 7% - 27% when used as virtual eco-driving controllers.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3