CFD Simulation of Visor for cleaning Autonomous Vehicle sensors: Focus on a Roof Mounted Lidar

Author:

Khajeh Hosseini D. Navvab1,Basso Davide2,Schigelone Michael3,Krishnan Venkatesh3,Hupertz Burkhard3,Jiang Tao3

Affiliation:

1. Ford Automotive Company

2. Siemens Digital Industries Software

3. Ford Motor Company

Abstract

<div class="section abstract"><div class="htmlview paragraph">The performance of autonomous vehicle (AV) sensors, such as lidars or cameras, is often hindered during rain. Rain droplets on the AV sensors can cause beam attenuation and backscattering, which in turn causes inaccurate sensor readings and misjudgment by AV algorithms. Most AV systems are equipped with cleaning systems to remove contaminants, such as rain, from AV sensors. One such mechanism is to blow high-speed air over the AV sensors. However, the cleaning air can be hindered by incoming headwind, especially at higher vehicle speeds. An innovative idea proposed here is to use a visor to improve the cleaning performance of AV cleaning systems at higher vehicle speeds. The effectiveness of a baseline visor design was studied using computational fluid dynamics (CFD) air flow analysis and Lagrangian rain droplet tracking. The baseline visor improved the AV sensor cleaning performance in two ways. First, the visor protects the cleaning air flow from being disturbed by headwind. And second, it deflects incoming rain droplets from landing on the sensor. Further visor design exploration and optimization was performed to find designs that do not block the lidar field of view (FOV) while optimizing lidar cleaning performance. One hundred designs were explored using the STAR-CCM+ design exploration tool, and the best designs showed that they can completely deflect incoming headwind at high vehicle speeds while not obstructing the FOV. Therefore, a visor can be a key feature to improve AV sensor rain management.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3