Next Generation High Efficiency Boosted Engine Concept

Author:

Shelby Michael H.1,Case Mark E.2,Chesney Lynn A.1

Affiliation:

1. Ford Motor Company

2. FEV North America, Inc.

Abstract

<div class="section abstract"><div class="htmlview paragraph">This work represents an advanced engineering research project partially funded by the U.S. Department of Energy (DOE). Ford Motor Company, FEV North America, and Oak Ridge National Laboratory collaborated to develop a next generation boosted spark ignited engine concept. The project goals, specified by the DOE, were 23% improved fuel economy and 15% reduced weight relative to a 2015 or newer light-duty vehicle. The fuel economy goal was achieved by designing an engine incorporating high geometric compression ratio, high dilution tolerance, low pumping work, and low friction. The increased tendency for knock with high compression ratio was addressed using early intake valve closing (EIVC), cooled exhaust gas recirculation (EGR), an active pre-chamber ignition system, and careful management of the fresh charge temperature. Engine weight reduction measures were implemented throughout the engine system making use of composite materials, advanced manufacturing techniques, and architectural choices. The combustion system stability, EGR tolerance, and knock resistance were validated on a single cylinder engine. An inline six-cylinder engine was then designed targeting application in the Ford F150. Multi-cylinder engines were produced and tested achieving the target vehicle fuel economy improvement of 23% assessed using measured engine fuel consumption combined with a vehicle drive cycle simulation. Actions were identified and designs were demonstrated to achieve the 15% weight reduction target. This project included items covering a range of technology readiness levels. Some of the technologies explored are production ready, while others were investigated to understand the limitations for what can be achieved in a stoichiometric, gasoline-fueled, spark-ignited internal combustion engine.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3