Neural Network Modeling of Black Box Controls for Internal Combustion Engine Calibration

Author:

Meli Matteo1,Wang Zezhou2,Bailly Peter1,Pischinger Stefan1

Affiliation:

1. RWTH Aachen University

2. FEV Europe GmbH

Abstract

<div class="section abstract"><div class="htmlview paragraph">The calibration of Engine Control Units (ECUs) for road vehicles is challenged by stringent legal and environmental regulations, coupled with short development cycles. The growing number of vehicle variants, although sharing similar engines and control algorithms, requires different calibrations. Additionally, modern engines feature increasingly number of adjustment variables, along with complex parallel and nested conditions within the software, demanding a significant amount of measurement data during development.</div><div class="htmlview paragraph">The current state-of-the-art (White Box) model-based ECU calibration proves effective but involves considerable effort for model construction and validation. This is often hindered by limited function documentation, available measurements, and hardware representation capabilities.</div><div class="htmlview paragraph">This article introduces a model-based calibration approach using Neural Networks (Black Box) for two distinct ECU functional structures with minimal software documentation. The ECU is operated on a Hardware-in-the-Loop (HiL) rig for measurement data generation.</div><div class="htmlview paragraph">To build surrogate models of these ECU functions, Neural Network model inputs are allocated categorized into two categories: function inputs as perceived by the logic level (White Box) software function, and curve/map fitting features representing the adjustment variables of the ECU function.</div><div class="htmlview paragraph">Factors influencing surrogate model accuracy such as, Neural Network hyperparameter optimization, input space amount and distribution as well as the parameter adjustment is investigated. Results show an increase in accuracy with the increasing number of implemented parameters, as well as the scalability of ECU function model representation with measurement data.</div><div class="htmlview paragraph">In addition to calibration purposes, the presented function representation method facilitates the use of plant models to replace time-consuming function construction and validation.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3