Design Optimization of a Lightweight Electric Bus Body Frame Orienting the Static Performance and Side-Impact Safety

Author:

Yang Xiujian1,Tian Dekuan1

Affiliation:

1. Kunming University of Science & Technology

Abstract

<div class="section abstract"><div class="htmlview paragraph">This work aims to perform the optimization of the iron-aluminum lightweight body frame of a commercial electric bus orienting the static performance (e.g., strength and stiffness), side-impact safety, and possible reduction in mass. Firstly, both the static and side-impact finite element (FE) models are established for the electric bus body frame. The body frame is partitioned according to the deformation and the thickness of the square tube beams, and the contribution is analyzed by the relative sensitivity and the Sobol index methods. The thickness of the tube beams in the nine regions is selected as the design optimization variables. After data sampling by the Hamersley method and conducting design of experiments (DOE), the surrogate models for optimization are fitted by the least square method. A multi-objective optimization problem is formulated by selecting the mass of the overall body frame, the maximum vehicle stress and the intrusion of the upper part of the collision area as the objectives of design optimization. The optimization problem is solved by the co-evolutionary constrained multi-objective optimization algorithm. By respectively focusing more on each of the three optimization objectives, three optimization schemes are solved and discussed. The optimization results are finally evaluated by FE simulations, and it is revealed that the stress is reduced by 34.41% and the side-impact intrusion is reduced by 4.48%, while the vehicle mass remained basically unchanged. The proposed optimization method can effectively improve the static performance and the side-impact performance of the iron-aluminum lightweight electric bus body skeleton.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3