Vulnerability analysis of DoIP implementation based on model learning

Author:

Luo Feng1,Wang Jiajia1,Li Zhihao1,Zhang Xiaoxian2

Affiliation:

1. Tongji University

2. iSOFT Infrastructure Software Co., Ltd.

Abstract

<div class="section abstract"><div class="htmlview paragraph">The software installed in Electronic Control Units (ECUs) has witnessed a significant scale expansion as the functionality of Intelligent Connected Vehicles (ICVs) has become more sophisticated. To seek convenient long-term functional maintenance, stakeholders want to access ECUs data or update software from anywhere via diagnostic. Accordingly, as one of the external interfaces, Diagnostics over Internet Protocol (DoIP) is inevitably prone to malicious attacks. It is essential to note that cybersecurity threats not only arise from inherent protocol defects but also consider software implementation vulnerabilities. When implementing a specification, developers have considerable freedom to decide how to proceed. Differences between protocol specifications and implementations are often unavoidable, which can result in security vulnerabilities and potential attacks exploiting them. Considering the security risks and technology trends of vehicles, this paper uses model learning for the first time to infer the protocol implementation state model against DoIP and aims to explore the unexpected state transitions that may occur during the interaction of diagnostic services. This is an automated black-box technique that provides the possibility to obtain a corresponding model of the observed implementation behavior. To achieve this, we construct a framework for applying model learning against DoIP implementation and utilize it to learn the state model. The experimental results demonstrate that the proposed vulnerability analysis method can effectively and accurately obtain the state model of specific protocol implementation. Software developers can visually spot the presence of such superfluous states or transitions by examining the obtained state model, further avoiding potential attacks that could exploit these vulnerabilities.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3