Predictive Maintenance of a Ground Vehicle Using Digital Twin Technology

Author:

Eddy Conner William1,Castanier Matthew P.2,Wagner John R.1

Affiliation:

1. Clemson University

2. US Army DEVCOM GVSC

Abstract

<div class="section abstract"><div class="htmlview paragraph">The safety and reliability of ground vehicles is a motivating factor for periodic maintenance which includes fluids, lubrication, cleaning, repairs, and general observation of key subsystems. The scheduling of maintenance activities can occur at different rates such as daily, weekly, or perhaps operating time based on collected historical data and general guidelines. The availability of a digital twin (DT), which offers a virtual representation of the vehicle behavior, enables virtual system simulations for different operating cycles to explore the dynamic behavior. When field operating fleet data can be integrated with the digital twin estimates, then this supplemental information can be combined with the existing maintenance plan to provide a more comprehensive approach. In this paper, a digital twin with a statistical based predictive maintenance strategy is investigated for a wheeled military ground vehicle. The underlying models and mathematics are presented to establish a basis for this engineering tool. A case study is examined in which a DT is utilized in a computer simulation mode as a physical vehicle was unavailable to generate numerical data for signal features and condition indicators. Representative results show a high validation accuracy and reasonable training times can be achieved in support of predictive maintenance classification models. The steady progression towards a virtual engineering design and product support framework for transportation systems relies on the presence of digital twin technology and prognostic-diagnostic methodologies.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3