A Novel Quasi-Dimensional Model for Transient Mixing Prediction in Two-Phase Multicomponent Sprays under Flash-Boiling Conditions

Author:

Weigand Peter1,Oswald Jonas1,Bin Mohd Izahar Mohd Farhan1,Bikas Georgios1

Affiliation:

1. Technische Hochschule Nuernberg

Abstract

<div class="section abstract"><div class="htmlview paragraph">A novel one-dimensional multiphase and multicomponent spray model - hereafter referred to as the Kattke-Weigand model - has been developed to predict the penetration length of both vapor and liquid gasoline sprays under flash-boiling conditions, such as superheated injections. Its formulation is based on mass and momentum equations for unsteady jets and is therefore capable of capturing dynamic effects. Experiments were conducted in a constant volume chamber using various ambient and fuel temperature conditions and a six-hole GDI injector with a separated jet. Macroscopic spray parameters were extracted from the measurements to verify the model's ability to predict both liquid and vapor penetration length and the corresponding spray angles.</div><div class="htmlview paragraph">Apart from the separated jet of the injector used, the other five jets interact strongly with each other under flash boiling conditions, resulting in spray collapse, and thus affecting spray characteristics. The prediction of collapse is very sensitive to calculations of vaporization and air entrainment. Since these submodels cannot be validated directly, a calibration method was developed, that is based on a three-dimensional reconstruction of all fuel sprays of the injector used. For this purpose, all optical measurements performed in the constant volume chamber are utilized. As a result, a three-dimensional representation of the spray collapse can be calculated from the combination of the 3D spray reconstruction and the entrainment and vaporization submodels. The validation of the collapse leads indirectly to the calibration of the entrainment and vaporization submodels in the Kattke Weigand model. Latter is applied to gain a deeper understanding of the interaction between spray collapse and both liquid and vapor phase penetration.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3