Full-Scale CFD Prediction of the Performance of Advanced After-Treatment Systems during Severe RDE Test Cycle

Author:

Sartirana Andrea1,Montenegro Gianluca1,Della Torre Augusto1,Onorati Angelo1,Pace Lorenzo2,Zaldua-Moreno Naroa2

Affiliation:

1. Politecnico di Milano

2. Emitec Technologies GmbH

Abstract

<div class="section abstract"><div class="htmlview paragraph">Air pollution is a significant environmental issue, and exhaust emissions from internal combustion engines are one of the primary sources of harmful pollutants. The transportation sector, which includes road vehicles, contributes to a large share of these emissions. In Europe, the latest emission legislation (Euro 7) proposes more stringent limits and testing conditions for vehicle emissions. To meet these limits, the automotive industry is actively developing innovative exhaust emission-control technologies.</div><div class="htmlview paragraph">With the growing prevalence of electrification, internal combustion engines are subject to continuous variations in load and engine speed, including phases where the engine is switched off. The result is an operating condition characterized by successive cold starts. In this context, the challenge in coping with the emission limits is to minimize the light-off time and prevent fast light-out conditions during idling or city driving. This goal can be achieved by reducing heat losses and thermal inertia, and suitably exploiting electrically heated solutions to maintain the catalyst inlet temperature at the desired level. In addition, issues related to mechanical durability must be considered, to allow the long-term life of the catalyst during continuous heat-up and cool-down cycles under severe flow conditions.</div><div class="htmlview paragraph">This paper aims to contribute to the development of an efficient after-treatment system, designed specifically for passenger cars, and to provide insights into the optimization of the catalyst design. This study employed advanced computational fluid dynamics (CFD) simulations to investigate the performance of a catalyst under a real driving emission cycle (RDE). A close-coupled configuration in a turbocharged gasoline engine was investigated. A detailed analysis of the external region of the substrate, which is critical because the temperatures are lower due to the heat transfer towards the environment, allows the identification of a suitable configuration. Flow conditions with post-turbo swirled flow along with the actuation of the wastegate valve were considered, and their impact on the pollutant abatement efficiency of the catalyst was evaluated.</div><div class="htmlview paragraph">A CFD framework has been implemented based on the open-source OpenFOAM code, modeling the complex phenomena of heat and mass transfer and catalytic reactions occurring in the substrate. Measured data of pollutant emissions and gas temperatures have allowed the validation of the CFD predictions and the optimization of the after-treatment system to limit the heat losses and reduce the pollutants emitted in the atmosphere during a real driving emission test cycle.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3