Enhancing Simulation Efficiency and Quality of Transient Conjugate Thermal Problems by Using an Advanced Meta-modeling Approach

Author:

Peissner Simon,Weigand Bernhard

Abstract

<div>In the field of thermal protection, detailed three-dimensional computational fluid dynamics (3D-CFD) simulations are widely used to analyze the thermal behavior on a full vehicle level. One target is to identify potential violations of component temperature limits at an early stage of the development process. In battery electric vehicles (BEVs), transient load cases play an increasing role in evaluating components and vehicle systems close to real-world vehicle operation. The state-of-the-art 3D simulation methodologies require significant time and computational effort when running transient load scenarios. One main reason is the conjugate characteristic of the problem, meaning that conduction within the component and convection into the surrounding air occur simultaneously. This requires a detailed consideration of both the fluid and structural domains.</div> <div>Therefore, this article derives a time-efficient simulation methodology for transient component temperatures in electric vehicles. The approach is to extract heat transfer coefficients and reference temperatures from sample flow simulations and to construct convective meta-models. Solid component temperatures are then transiently computed whereby the low-dimensional meta-models provide the convective heat transfer. Dimensional analysis determines the smallest possible parameter space for the meta-modeling. Two different types of meta-models, a scalar regression model and a vector proper orthogonal decomposition (POD) approach, are tested and compared.</div> <div>The study examines at first the applicability of the heat transfer formulation under different flow and component temperature conditions using a generic flat plate test case. A low Biot number (Bi) is crucial to receive accurate temperature predictions as heat transfer coefficients are derived on uniform temperature walls. The methodology is subsequently applied to a sample component in the motor compartment. Measurements on a test rig and a transient load case comparison with a coupled simulation prove the validity of the numerical procedure. Scaling to full-vehicle applications is feasible. The new methodology delivers a highly accurate temperature prediction and increases computation efficiency, especially for sensitivity studies.</div>

Publisher

SAE International

Subject

Modeling and Simulation,Safety, Risk, Reliability and Quality,Mechanical Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3