Real-Time Prediction of Fuel Consumption via Recurrent Neural Network (RNN) for Monitoring, Route Planning Optimization and CO2 Reduction of Heavy-Duty Vehicles

Author:

Pandolfi Alfonso1,Adinolfi Ennio Andrea2,Polverino Pierpaolo1,Pianese Cesare1

Affiliation:

1. Università degli Studi di Salerno

2. MinervaS/Università degli Studi di Salerno

Abstract

<div class="section abstract"><div class="htmlview paragraph">This article presents a novel approach for predicting fuel consumption in vehicles through a recurrent neural network (RNN) that uses only speed, acceleration, and road slope as input data. The model has been developed for real-time vehicle monitoring, route planning optimization, cost and emissions reduction and it is suitable for fleet-management purposes. To train and test the RNN, chosen after addressing several structures, experimental data have been measured on-board of a heavy-duty truck representative of a heavy-duty transportation company. Data have been acquired during typical daily missions, making use of an advanced connectivity platform, which features CANbus vehicle connection, GPS tracking, 4G/LTE - 5G connectivity, along with on-board data processing. The experimental data used for RNN train and test have been treated starting from on-board acquired raw data (e.g., speed, acceleration, fuel consumption, etc.) along with road slope downloaded from map providers. The improvement of the network performance has been achieved through a weight pruning procedure, to minimize instabilities and error amplification during fuel consumption prediction. RNN training has been performed using only one scheduled mission for both vehicles, but to distinct models (i.e., one for the bus and one for the truck) has been designed and tested on various routes, showing high accuracy in fuel consumption estimation. The achieved results proved RNN being capable of improving fuel consumption prediction on simulated routes, utilizing only few inputs, to support fleet operations in advanced route planning, with lower operating expenses and therefore reduced pollutant emissions.</div></div>

Publisher

SAE International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3