A Quasi-Dimensional Two-System Burn Rate Model for Pre-Chamber-Initiated SACI Combustion

Author:

Salerno Francesco1,Kulzer Andre1,Bargende Michael1,Grill Michael2,Burkardt Patrick3,Günther Marco3,Pischinger Stefan3

Affiliation:

1. IFS, University of Stuttgart

2. FKFS

3. TME, RWTH Aachen University

Abstract

<div class="section abstract"><div class="htmlview paragraph">State-of-the-art spark-ignition engines mainly rely on the quasi-hemispherical flame propagation combustion method. Despite significant development efforts to obtain high energy conversion efficiencies while avoiding knock phenomena, achieved indicated efficiencies remain around 35 - 40 %. Further optimizations are enabled by significant excess air dilution or increased combustion speed. However, flammability limits and decreasing flame speeds with increasing air dilution prevent substantial improvements. Pre-Chamber (PC) initiated jet ignition combustion systems improve flame stability and shift flammability limits towards higher dilution levels due to increased turbulence and a larger flame area in the early Main-Chamber (MC) combustion stages. Simultaneously, the much-increased combustion speed reduces knock tendency, allowing the implementation of an innovative combustion method: PC-initiated jet ignition coupled with Spark-Assisted Compression Ignition (SACI). The jets penetrating the MC establish a flame propagation combustion that – with appropriate boundary conditions – triggers a controlled volume reaction in the remaining charge. The resulting ultra-fast combustion process converges to the ideal thermodynamic constant-volume cycle leading to indicated efficiencies of &gt;45%. However, implementing this combustion method requires precisely adjusted boundary conditions and a suitable geometrical design (e.g., compression ratio). This paper addresses the development of a fast-running quasi-dimensional burn rate model for PC-initiated SACI combustion to conduct robust design studies and complement existing testing methodologies (3D-CFD, experimental). The modeling approach considers two thermodynamic systems (PC and MC) connected through orifices. Both systems use the two-zone entrainment model for flame propagation combustion. Furthermore, the eventual MC volume reaction is modeled by a multi-pseudo-zone approach based on a distributed auto-ignition integral. The models are integrated into the so-called cylinder module developed at the Institute of Automotive Engineering Stuttgart and validated using measurement data of two single-cylinder research engines using different fuels (E100, RON95E10), loads (<i>IMEP</i> = 6 − 15 <i>bar</i>), excess air dilutions (<i>λ</i> = 1 − 2.8) and compression ratios (12.6 – 16.4), showing a satisfactory prediction of the burn rates and pressure curves.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3