Theoretical Analysis of Multi-Zone and Transported Probability Density Function Approaches Applied to Low Temperature Combustion Process

Author:

Maroteaux Fadila1,Mancaruso Ezio2,Pommier Pierre-Lin1,Vaglieco Bianca Maria3

Affiliation:

1. Université de Versailles St. Quentin En Yveline

2. STEMS - CNR

3. STEMS- CNR

Abstract

<div class="section abstract"><div class="htmlview paragraph">Electrification of transport, together with the decarbonization of energy production are suggested by the European Union for the future quality of air. However, in the medium period, propulsion systems will continue to dominate urban mobility, making mandatory the retrofitting of thermal engines by applying combustion modes able to reduce NOx and PM emissions while maintaining engine performances. Low Temperature Combustion (LTC) is an attractive process to meet this target. This mode relies on premixed mixture and fuel lean in-cylinder charge whatever the fuel type: from conventional through alternative fuels with a minimum carbon footprint. This combustion mode has been subject of numerous modelling approaches in the engine research community. This study provides a theoretical comparative analysis between multi-zone (MZ) and Transported probability density function (TPDF) models applied to LTC combustion process. The generic thermo-kinetic balances for both approaches have been analyzed in term of similarities. Only onion-skin for MZ models have been considered in this study. The governing assumptions linked to sub-models for each approach to describe mixing process for TPDF and interzonal heat and mass transport for MZ are discussed. This step identifies the calibrated model parameters for each approach and their effects on the accuracy in predicting LTC mode simulations. This work shows that the transported probability density function model has fewer parameters to calibrate compared to multi-zone model. Transported probability density function seems easier to use for LTC process.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3