Electrofuel Concept of Diesel and Oxygenate Fuels Reduces Engine-Out Emissions

Author:

Aakko-Saksa Paivi1,Järvinen Anssi1,Karppanen Mikko1,Koponen Paivi1,Piimäkorpi Pekka1,Lehtonen Juha1,Harni Sami2,Aurela Minna2,Timonen Hilkka2,Marjanen Petteri3,Markkula Lassi3,Rönkkö Topi3,Hoivala Jussi3

Affiliation:

1. VTT Technical Research Center of Finland

2. Finnish Meteorological Institute

3. Tampere University

Abstract

<div class="section abstract"><div class="htmlview paragraph">Electrofuels produced from renewable hydrogen (H<sub>2</sub>) and captured carbon dioxide (CO<sub>2</sub>) can be sustainable and carbon-neutral. Paraffinic electrodiesel (e-diesel) can be produced via Fischer-Tropsch synthesis with fuel properties resembling hydrotreated vegetable oils. Electrofuels can be also oxygenated compounds, such as oxymethylene dimethyl ethers (OMEn), having different chain lengths. We studied emissions using paraffinic diesel mimicking e-diesel and its blend with 10% of OME3-5, which has diesel-type fuel properties, in comparison with normal EN590 diesel fuel. An intensive measurement campaign was performed with a modern diesel engine without exhaust aftertreatment to study the effect of fuel on the engine-out emissions. Measurements with the RMC-C1 cycle included detailed characterization of gaseous, particle and polyaromatic hydrocarbon (PAH) emissions having adverse effects on health and the environment. In these tests without a diesel particulate filter, the fuel containing the OME3-5 component reduced the black carbon (BC) emissions substantially in comparison with EN590. PM and PAH emissions, as well as the number of non-volatile particle numbers (nvPN), were lower for paraffinic fuel than for the EN590 fuel, and particularly for the OME3-5 blend. As regards gaseous emissions, paraffinic fuel showed lower engine-out NO<sub>x</sub> emissions than the EN590 fuel, however, OME3-5 oxygenate did not further increase this NO<sub>x</sub> reduction. Higher formaldehyde concentration in the exhaust was found for OME3-5 containing fuel than for the hydrocarbon-only fuels, which can be tackled with an inexpensive oxidation catalyst. In summary, e-diesel type paraffinic fuel reduced the engine-out exhaust emissions from a modern diesel engine substantially, and OME3-5 addition further reduced the most harmful emission species even at a 10% blending level.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3