Investigation via Finite Element Analysis of the Influence of Boiling on the Thermo-Structural Behavior of the Engine Head of a High-Performance Combustion Engine

Author:

Piergiacomi Andrea1,Barbieri Saverio Giulio1,Renso Fabio1,Mangeruga Valerio1,Giacopini Matteo1

Affiliation:

1. University of Modena and Reggio Emilia

Abstract

<div class="section abstract"><div class="htmlview paragraph">This paper presents a numerical methodology for studying the effect of boiling on the structural behavior of high-performance internal combustion engines. Boiling occurs when the portion of engine coolant in contact with hot walls reaches high temperatures and vapor bubbles form. While incipient vaporization of the coolant can promote additional cooling, excessive vapor can act as an insulator and lead to potentially dangerous high temperatures in the engine. Boiling is typically analyzed using Computational Fluid Dynamic Analyses, which are usually computationally intensive. In this study, the authors propose a Finite Element methodology that combines semi-empirical formulations, less demanding than Computational Fluid Dynamic models, with thermal Finite Element simulations to detect and manage boiling. Two different empirical formulations for boiling were employed, proposed by Garro and Chen respectively, and their results were compared. Three thermal analyses were conducted: the first neglected the effect of boiling, which leads to results inconsistent with the assumption of single-phase fluid, while in the second and third simulations, the occurrence of boiling and its effects were managed using the Garro and Chen formulations. The results showed a significant decrease in wall temperatures around the regions where boiling was detected and a parallel reduction of the thermal gradients inside the component. The two semi-empirical approaches for boiling estimation produced similar results, suggesting their substantial equivalence. Then, the temperature fields obtained were employed in structural Finite Element Analyses to evaluate the effects of boiling on the fatigue life of the engine head. In the structural analyses, the more uniform thermal field leads to a reduction of thermal deformations and to a different stress state, affecting the safety factor distribution. This methodology has the potential to be a suitable tool for detecting boiling and its effect during the early stages of engine design.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3