Optical Diagnostic Study on Improving Performance and Emission in Heavy-Duty Diesel Engines Using a Wave-Shaped Piston Bowl Geometry and Post Injection Strategies

Author:

Gong Miaoxin1,Derafshzan Saeed1,Richter Mattias1,Hemdal Stina2,Eismark Jan2,Andersson Oivind1,Lundgren Marcus1

Affiliation:

1. Lund University

2. Volvo Group Trucks Technology

Abstract

<div class="section abstract"><div class="htmlview paragraph">This study explores the potential benefits of combining a wave-shaped piston geometry with post injection strategy in diesel engines. The wave piston design features evenly spaced protrusions around the piston bowl, which improve fuel-air mixing and combustion efficiency. The 'waves' direct the flames towards the bowl center, recirculating them and utilizing the momentum in the flame jets for more complete combustion. Post injection strategy, which involves a short injection after the main injection, is commonly used to reduce emissions and improve fuel efficiency. By combining post injections with the wave piston design, additional fuel injection can increase the momentum utilized by the flame jets, potentially further improving combustion efficiency. To understand the effects and potential of the wave piston design with post injection strategy, a single-cylinder heavy-duty compression-ignition optical engine with a quartz piston is used. The piston bowl is modified to remove waves on one side, allowing for a direct comparison between the wave and non-wave piston designs under identical engine operating conditions. Natural Luminosity is used as an optical diagnostic technique to visualize flame-piston and flame-flame interactions. The engine is operated under mid-load conditions (~9 bar IMEP) with different post injection strategies. The study provides insights into the potential benefits of combining the wave piston design with post injection strategy for improving combustion efficiency and engine performance in heavy-duty diesel engines.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3